Cover Image
Saved in:

Brownian dynamics at boundaries and interfaces : in physics, chemistry, and biology /

Brownian dynamics serve as mathematical models for the diffusive motion of microscopic particles of various shapes in gaseous, liquid, or solid environments. The renewed interest in Brownian dynamics is due primarily to their key role in molecular and cellular biophysics: diffusion of ions and molec...

Full description

Bibliographic Details
Main Author: Schuss, Zeev, 1937-, (Author)
Corporate Author: SpringerLink (Online service)
Format: Online Book
Language:English
Published: New York : Springer, [2013]
Series:Applied mathematical sciences (Springer-Verlag New York Inc.) ; volume 186.
Subjects:
Online Access:Online version
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 03586cam a2200469Ki 4500
001 1468743
005 20131111094104.0
006 m o d
007 cr cnu|||unuuu
008 130925s2013 nyua ob 001 0 eng d
035 |a (OCoLC)ocn858924139 
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d UKMGB 
016 7 |a 016505562  |2 Uk 
020 |a 9781461476870 (electronic bk.) 
020 |a 1461476879 (electronic bk.) 
020 |z 9781461476863 
024 7 |a 10.1007/978-1-4614-7687-0  |2 doi 
050 4 |a QA274.75  |b .S38 2013 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
049 |a PVUM 
100 1 |a Schuss, Zeev,  |d 1937-,  |e author. 
245 1 0 |a Brownian dynamics at boundaries and interfaces :  |b in physics, chemistry, and biology /  |c Zeev Schuss. 
264 1 |a New York :  |b Springer,  |c [2013] 
264 4 |c ©2013 
300 |a 1 online resource (xx, 322 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Applied mathematical sciences,  |x 0066-5452 ;  |v volume 186 
505 0 |a The mathematical Brownian motion -- Euler simulation of Ito SDEs -- Simulation of the overdamped Langevin equation -- The first passage time of a diffusion process -- Chemical reaction in microdomains -- The stochastic separatrix -- Narrow escape in R² -- Narrow escape in R³. 
504 |a Includes bibliographical references and index. 
588 |a Description based on online resource; title from PDF title page (SpringerLink, viewed September 25, 2013). 
520 |a Brownian dynamics serve as mathematical models for the diffusive motion of microscopic particles of various shapes in gaseous, liquid, or solid environments. The renewed interest in Brownian dynamics is due primarily to their key role in molecular and cellular biophysics: diffusion of ions and molecules is the driver of all life. Brownian dynamics simulations are the numerical realizations of stochastic differential equations that model the functions of biological micro devices such as protein ionic channels of biological membranes, cardiac myocytes, neuronal synapses, and many more. Stochastic differential equations are ubiquitous models in computational physics, chemistry, biophysics, computer science, communications theory, mathematical finance theory, and many other disciplines. Brownian dynamics simulations of the random motion of particles, be it molecules or stock prices, give rise to mathematical problems that neither the kinetic theory of Maxwell and Boltzmann, nor Einstein's and Langevin's theories of Brownian motion could predict. This book takes the readers on a journey that starts with the rigorous definition of mathematical Brownian motion, and ends with the explicit solution of a series of complex problems that have immediate applications. It is aimed at applied mathematicians, physicists, theoretical chemists, and physiologists who are interested in modeling, analysis, and simulation of micro devices of microbiology. The book contains exercises and worked out examples throughout. 
506 |a Electronic access restricted to Villanova University patrons. 
650 0 |a Brownian motion processes. 
710 2 |a SpringerLink (Online service) 
830 0 |a Applied mathematical sciences (Springer-Verlag New York Inc.) ;  |v volume 186. 
856 4 0 |u http://ezproxy.villanova.edu/login?URL=http://dx.doi.org/10.1007/978-1-4614-7687-0  |z Online version 
994 |a 92  |b PVU 
852 0 |b WWW  |h QA274.75  |i .S38 2013