Self-similarity in Walsh functions and in the farfield diffraction patterns of radial Walsh filters /
Saved in:

Self-similarity in Walsh functions and in the farfield diffraction patterns of radial Walsh filters /

Bibliographic Details
Main Authors: Hazra, Lakshminarayan (Author), Mukherjee, Pubali (Author)
Corporate Author: SpringerLink (Online service)
Format: Online Book
Language:English
Published: Singapore : Springer, [2018]
Series:SpringerBriefs in applied sciences and technology.
Subjects:
Access:Online version
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 03658cam a2200529Ii 4500
001 1854064
005 20180205102328.0
006 m o d
007 cr cnu|||unuuu
008 170613s2018 si a ob 000 0 eng d
035 |a (OCoLC)ocn989974695 
035 |a (OCoLC)989974695  |z (OCoLC)1005137694  |z (OCoLC)1012051580 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d GW5XE  |d OCLCF  |d YDX  |d STF  |d NJR  |d COO  |d AZU  |d MERER  |d CNCGM  |d UAB 
066 |c (S 
020 |a 9789811028090  |q (electronic bk.) 
020 |a 9811028095  |q (electronic bk.) 
020 |z 9789811028083 
024 7 |a 10.1007/978-981-10-2809-0  |2 doi 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
049 |a PVUM 
100 1 |a Hazra, Lakshminarayan,  |e author. 
245 1 0 |a Self-similarity in Walsh functions and in the farfield diffraction patterns of radial Walsh filters /  |c Lakshminarayan Hazra, Pubali Mukherjee. 
264 1 |a Singapore :  |b Springer,  |c [2018] 
300 |a 1 online resource (viii, 82 pages) :  |b illustrations (some color). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer briefs in applied sciences and technology 
504 |a Includes bibliographical references. 
506 |a Electronic access restricted to Villanova University patrons. 
588 0 |a Vendor-supplied metadata. 
505 0 |a Walsh Functions -- Self-similarity in Walsh Functions -- Computation of Farfield Diffraction Characteristics of radial Walsh Filters on the pupil of axisymmetric imaging systems -- Self-similarity in Transverse Intensity Distributions on the Farfield plane of self-similar radial Walsh Filters -- Self-similarity in Axial Intensity Distributions around the Farfield plane of self-similar radial Walsh Filters -- Self-similarity in 3D Light Distributions near the focus of self-similar radial Walsh Filters. Conclusion. 
650 0 |a Walsh functions. 
650 7 |a MATHEMATICS / Calculus  |2 bisacsh 
650 7 |a MATHEMATICS / Mathematical Analysis  |2 bisacsh 
650 7 |a Walsh functions.  |2 fast  |0 (OCoLC)fst01170233 
655 4 |a Electronic books. 
700 1 |a Mukherjee, Pubali,  |e author. 
710 2 |a SpringerLink (Online service) 
776 0 8 |i Printed edition:  |z 9789811028083 
830 0 |a SpringerBriefs in applied sciences and technology. 
856 4 0 |z Online version  |u http://ezproxy.villanova.edu/login?URL=http://link.springer.com/10.1007/978-981-10-2809-0 
880 |6 520-00  |a The book explains the classification of a set of Walsh functions into distinct self-similar groups and subgroups, where the members of each subgroup possess distinct self-similar structures. The observations on self-similarity presented provide valuable clues to tackling the inverse problem of synthesis of phase filters. Self-similarity is observed in the far-field diffraction patterns of the corresponding self-similar filters. Walsh functions form a closed set of orthogonal functions over a prespecified interval, each function taking merely one constant value (either +1 or 1) in each of a finite number of subintervals into which the entire interval is divided. The order of a Walsh function is equal to the number of zero crossings within the interval. Walsh functions are extensively used in communication theory and microwave engineering, as well as in the field of digital signal processing. Walsh filters, derived from the Walsh functions, have opened up new vistas. They take on values, either 0 or π phase, corresponding to +1 or -1 of the Walsh function value. 
994 |a 92  |b PVU 
852 |b WWW