Knots.
Saved in:

Knots.

This 3. edition is an introduction to classical knot theory. It contains many figures and some tables of invariants of knots. This comprehensive account is an indispensable reference source for anyone interested in both classical and modern knot theory. Most of the topics considered in the book are...

Full description

Bibliographic Details
Main Authors: Burde, Gerhard, 1931- (Author), Zieschang, Heiner (Author), Heusener, Michael (Author)
Corporate Author: PALCI EBSCO books
Format: Online Book
Language:English
Published: Berlin ; Boston : Walter de Gruyter GmbH & Co. KG, 2013.
Edition:3rd [edition] /
Series:De Gruyter studies in mathematics.
Subjects:
Access:Online version
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 03396cam a2200505Mi 4500
001 2427956
005 20200828123038.0
006 m o d
007 cr |n|||||||||
008 140119s2013 gw ob 001 0 eng d
035 |a (OCoLC)ocn872700642 
040 |a CNSPO  |b eng  |e pn  |c CNSPO  |d YDXCP  |d OCLCO  |d N$T  |d CDX  |d OCLCF  |d CNKEY  |d CCO  |d LLB  |d EBLCP  |d IDEBK  |d DEBSZ  |d COO  |d AZU  |d SFB  |d FVL  |d NMC  |d UV0  |d K6U  |d DEBBG  |d OCLCQ  |d N15  |d S2H  |d OCLCQ  |d UIU  |d Z5A  |d ZCU  |d MERUC  |d OCLCQ  |d VTS  |d ICG  |d OCLCQ  |d WYU  |d STF  |d DKC  |d OCLCQ  |d M8D  |d OCLCQ 
020 |a 3110270781  |q (electronic bk.) 
020 |a 9783110270785  |q (electronic bk.) 
020 |z 9783110270747 
020 |z 3110270749 
050 4 |a QA612.2  |b .B87 2013 
049 |a PVUM 
100 1 |a Burde, Gerhard,  |d 1931-  |e author. 
245 1 0 |a Knots. 
250 |a 3rd [edition] /  |b by Gerhard Burde, Heiner Zieschang, Michael Heusener. 
264 1 |a Berlin ;  |a Boston :  |b Walter de Gruyter GmbH & Co. KG,  |c 2013. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a De Gruyter Studies in Mathematics 
504 |a Includes bibliographical references and index. 
506 |a Electronic access restricted to Villanova University patrons. 
588 0 |a Print version record. 
505 0 |a Preface to the First Edition; Preface to the Second Edition; Preface to the Third Edition; Contents; Chapter 1: Knots and isotopies; Chapter 2: Geometric concepts; Chapter 3: Knot groups; Chapter 4: Commutator subgroup of a knot group; Chapter 5: Fibered knots; Chapter 6: A characterization of torus knots; Chapter 7: Factorization of knots; Chapter 8: Cyclic coverings and Alexander invariants; Chapter 9: Free differential calculus and Alexander matrices; Chapter 10: Braids; Chapter 11: Manifolds as branched coverings; Chapter 12: Montesinos links; Chapter 13: Quadratic forms of a knot. 
505 8 |a Chapter 14: Representations of knot groupsChapter 15: Knots, knot manifolds, and knot groups; Chapter 16: Bridge number and companionship; Chapter 17: The 2-variable skein polynomial; Appendix A: Algebraic theorems; Appendix B: Theorems of 3-dimensional topology; Appendix C: Table; Appendix D: Knot projections 01-949; References; Author index; Glossary of Symbols; Index. 
520 |a This 3. edition is an introduction to classical knot theory. It contains many figures and some tables of invariants of knots. This comprehensive account is an indispensable reference source for anyone interested in both classical and modern knot theory. Most of the topics considered in the book are developed in detail; only the main properties of fundamental groups and some basic results of combinatorial group theory are assumed to be known. 
650 0 |a Knot theory. 
650 7 |a MATHEMATICS  |x Topology.  |2 bisacsh 
650 7 |a Knot theory.  |2 fast  |0 (OCoLC)fst00988171 
655 4 |a Electronic books. 
700 1 |a Zieschang, Heiner,  |e author. 
700 1 |a Heusener, Michael,  |e author. 
710 2 |a PALCI EBSCO books. 
776 0 8 |i Print version:  |z 9783110270747  |z 3110270749  |w (DLC) 2013043504 
830 0 |a De Gruyter studies in mathematics. 
856 4 0 |z Online version  |u http://ezproxy.villanova.edu/login?URL=http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=674601 
994 |a 92  |b PVU 
852 0 |b WWW  |h QA612.2  |i .B87 2013